Focusing bistatic forward-looking synthetic aperture radar based on modified Loffeld’s bistatic formula and chirp scaling algorithm
نویسندگان
چکیده
A focusing solution for bistatic forward-looking synthetic aperture radar (BFSAR) is presented. Forward-looking imaging is highly desirable in some potential applications, such as self-landing in bad weather, military surveillance, and navigation. Unfortunately, monostatic synthetic aperture radar reaches its limit when it is used in a forward-looking configuration. BFSAR can provide a high-resolution image in the forward-looking direction. However, due to the special forward-looking geometry, many proposed methods of deriving a bistatic point target reference spectrum (BPTRS) cannot handle the BFSAR data well. A modified Loffeld’s bistatic formula (MLBF) for a forward-looking configuration is proposed first; it can get an accurate BPTRS of BFSAR. Then, a chirp scaling algorithm (CSA) based on MLBF is derived. CSA without interpolation allows high performance. Numerical simulations show that the proposed focusing solution can handle the BFSAR data well and achieve a highresolution focused image. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.8.083586]
منابع مشابه
Bistatic Forward-Looking Synthetic Aperture Radar Imaging Based on the Modified Loffeld’s Bistatic Formula
Bistatic forward-looking SAR (BFSAR) has many potential applications, such as selflanding in bad weather and military detection. Therefore, BFSAR receives considerable attention recently. The imaging algorithms for BFSAR are the difficulties of the study. The original Loffeld’s Bistatic Formula (LBF) can handle most general bistatic SAR configurations well. But in some complex bistatic geometri...
متن کاملRange Doppler Algorithm for Bistatic Sar Processing Based on the Improved Loffeld’s Bistatic Formula
This paper presents a new range Doppler algorithm (RDA) for bistatic synthetic aperture radar (SAR) processing in a general configuration based on a bistatic point target reference spectrum: the improved extended Loffeld’s bistatic formula (ILBF). The ILBF spectrum is proved to be comparably accurate with the spectrum derived using the method of series reversion (MSR). Based on the expansion of...
متن کاملFocusing Translational Variant Bistatic Forward-Looking SAR Data Based on Two-Dimensional Non-Uniform FFT
Forward-looking imaging has extensive potential applications, such as self-navigation and self-landing. By choosing proper geometry, bistatic synthetic aperture radar (BiSAR) can break through the limitations of monostatic SAR on forward-looking imaging and provide possibility of the forwardlooking imaging. In this special bistatic configuration, two problems involving large range cell migratio...
متن کاملFocusing high-squint and large-baseline one-stationary bistatic SAR data using keystone transform and enhanced nonlinear chirp scaling based on an ellipse model
This paper deals with the imaging problem for one-stationary bistatic synthetic aperture radar (BiSAR) with highsquint, large-baseline configuration. In this bistatic configuration, accurate focusing of BiSAR data is a difficult issue due to the relatively large range cell migration (RCM), severe range-azimuth coupling, and inherent azimuthgeometric variance. To circumvent these issues, an enha...
متن کاملAn Extended Wavenumber-Domain Algorithm Combined with Two-Step Motion Compensation for Bistatic Forward-Looking SAR
With appropriate geometry configurations, bistatic Synthetic Aperture Radar (SAR) can break through the limitations of monostatic SAR on forward-looking imaging. Thanks to such a capability, bistatic forward-looking SAR (BFSAR) has extensive potential applications. For the focusing problem of BFSAR, wavenumber-domain algorithm is accepted as the ideal solution. However, in practical application...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017